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NOMENCLATURE

ab length and vidth of plate

B p~ankl integers defined by Equation (14)

[C] generalized damping matrix

Cpq function defined by Equation (69)

D flexural rigidity

Young's modulus

f frequency in Hz

fm(x), gn(y) displacement functions defined by Equations
(11, 12)

F Airy stress function
Fpq stress function coefficients defined by Equation

(14)

h thickness of plate

i,j,k,l,m,np,q,r,s integers

ix(Wimn), Iy(Wmn) functions defined by Equations (25, 26)

[K] generalized stiffness matrix

L mathematical operator defined by Equation (1)

(Lt] generalized mass matrix

p pressure

P pressure in normal coordinates

Px' Py average edge loads defined by Equations (29, 30)

q normal coordinate

Sf dimensionless pressure spectral density defined
by Equation (61)
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NOMENCLATURE - CONTINUED

S p(W) spectral density of P(t)

t time

uv inplane displacements

w lateral deflection

Wmn generalized displacements

xy coordinates

Zx (Wmn)• Zy(W)mn functions defined by Equations (27, 28)

length-to-width ratio, a/b

vector function defined by Equations (33, A6-A8,
B2)

Y shearing strain

normal strain

damping ratio, c/cc

_ i mass parameter defined by Equation (64)

V Poisson's ratio

3 9mass density

a normal stress

shearing stress

0 normal mode

w linear frequency in red/sec

Ql equivalent linear or nonlinear frequency in red/sec

Subscripts

b bending component

EL equivalent linear

L linear

o membrane component
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SECTION I

INTRODUCTION

1. BACKGROUND

Acoustically induced fatigue failures in aircraft and missile operation

have been a design consideration for over 25 years. The problem was intro-

duced with the advent of the turbo jet engine which produced high intensity

acoustic pressure fluctuations on aircraft surfaces. As the engine perform-

ance requirements increased, the intensity of the acoustic pressures in-

creased. Airframe minimum weight requirements resulted in higher stresses

in structural components. The number of acoustic fatigue failures began to

grow at a rapid rate until adequate design criteria were developed and used

in the design process.

Similar fatigue failures have occurred in other regions of high inten-

sity pressure fluctuations. These have occurred in regions of separated

flow, behind protuberances into the flow such as airbrakes, and close to

propeller tips. Failures have also occurred from the fluctuating pressure

induced when bomb bay doors are opened during high speed flight.

The oscillating pressures from various noise sources produced a reso-

nant response of the structural component such as external skin panels,

frames, ribs and spars which results in rapid stress reversals in the struc-

ture. If these stresses have sufficient magnitude, fatigue failures occur.

Acoustic fatigue failures have resulted in unacceptable maintenance and

inspection burdens associated with the operation of the aircraft. In some

cases, sonic fatigue failures have resulted in major redesign efforts of

aircraft structural components. Therefore, accurate prediction methods are

% .. .-. %



needed to determine the acoustic fatigue life of structures. Many analyt-

ical and experimental programs to develop sonic fatigue design criteria,

however, have repeatedly shown a poor comparison between analytical and

measured RMS maximum strain (References 1-9). Deviations in excess of 100

percent are not uncommon. One of the major reasons suspected for the

discrepancy was that the panel response was based on small deflection linear

structural theory, whereas the test panels responded with large deflections

at high sound pressure levels (SPL).

Most recently, an analytical effort (References 10, 11) using a single-

mode approach, and a test program (Reference 12) have demonstrated that the

prediction of panel random response is greatly improved by the inclusion of

large deflection effects in the analysis.

Test results in References 1, 2 and 12 also have shown that there are

more than one mode responding. Multiple modes were also observed by Wolfe

and Wentz (Reference 13) and White (Reference 14) in experimental investiga-

tions on aluminum fuselage panels and carbon fiber-reinforced plastics

(CFRP) plates under acoustic loading. White also showed that the fundamen-

tal mode responded significantly and contributed more than one-half of the

total mean-square strain response; higher modes, up to third or fourth

modes, account for 95% or more of the total mean-square strain response. In

order to have an accurate determination of the random response of a

structure, multiple modes should be used in the analysis. This report, Vol-

tune I, presents an analytical effort on large-amplitude random response of a

clamped rectangular thin plate subjected to acoustic excitation using multi-

ple (4) modes in the formulation. The developed computer software is

published in Volume II of this docmuent.

2
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S:2. OBJECTEIVS Of" THA INVESTIGATION

The primary aim of this research is to investigate the large-amplitude,

multimodal response of clamped, rectangular, flat, thin panels of uniform

thickness subjected to broadband, random acoustic excitation. More

specifically, the following tasks will be performed in accomplishing this

(a) Development of an "quasi-exact" solution procedure for determining

the nonlinear response of a clamped rectangular plate to random loading;

(b) Computerization of the solution procedure to simplify application

to the nonlinear random response problems studied in this investigafion and

for the convenience of other researchers who wish to use and/or extend this

work; and

(c) Determination of the aMS maximum panel deflection, the IM4S maximum

strain, and the frequencies of vibration of an acoustically excitated clamp-

ed plate which will enable the practical utilization for escimation of sonic

fatigue life.

3
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SECTION II

MATHEKATICAL FORMULATION AND SOLUTION PROCEDURfi

1. GOVERNING EQUATIONS

Thme governing equations of a thin rectangular, isotropic plate undergo-

ing large-deflection motions, neglecting the effects of both inplane and

rotatory inertia forces, are (References 15, 16)

L(w,F) - DV4 w + phw, t + gwt

S" h(F W) xx + F, xx W, - 2 F, y w )

- p(t) -0 (1)

V4 F UE(W2 ,xy - , xxv, )yy (2)

where a comma denotes the partial differentiation with respect to the corre-

sponding variable, w is the lateral deflection, D is the flexural

rigidity, p is the mass density, h is the plate thickness, p is the

pressure, E is the Young's modulus, and g is the viscous damping. The

stress function F is defined by

So -n, (3)
ox Fyy

4oy Fxx

oxy xy

4

, W%



where aox, Coy and Toxy are the membrane stresses.

Equations (1) and (2) together with a complete set of boundary condi-

tions, define the problem. These equations are subjected to the usual out-

of-plane boundary conditions required in small deflection theory (zero edge

deflection and slope for clamped edges). In addition, for large deflec-

tions, it is necessary to specify inplane boundary conditions. The inplane

boundary conditions must be specified in terms of a combination of applied

edge load and displacements.

The particular inplane boundary conditions of most interest in the

study of sonic fatigue of structural panels is the one in which the edges

are restrained from movement, that is

u W 0 on x - 0 and a (6)

v a 0 on y - 0 and b (7)

where the plate has a length a, width b, and the origin of the coordin-

ates is taken at one corner as indicated in Figure 1. The numerical results

presented in the next section are all based on these inplane boundary condi-

t ions.

2. SOLUTION

Generally, there are four methods which are used in the analysis of

mulci-degree-of-freedom nonlinear systems under random excitations. These

are the Fokker-Planck equation approach, the perturbation approach, the

finite difference approach and the equivalent (statistical or stochastic)

5
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linearization approach. Application of these methods to panels of complex

configurations vere discussed in Reference 4. There have been very few

attempts at solution of Equations (1) and (2) treating plates under random

loading.

The classical approach attempts a direct solution of the differential

equations, thereby allowing a reduction in numerical approximations. This

approach generaily involves the assumption of a set of global solution

functions which are simple analytically, usually one term (References 10,

IL, 17 and 18) and satisfy the geometric boundary conditions. The differen-

tial equations are then satisfied approximately by use of a Rayliegh-Ritz or

Galerkin procedure. Such an approach allows simple solutions; but since the

shape of the solution functions are predetermined, the accuracy of the pre-

diction is limited by these choices. A complete description of the deflec-

tion shape will not be able to emerge since the shape has been predeter-

mined. A notable exception to the constrained function approach was the

solution procedure developed by Levy (Reference 19) for bending of a simply

supported rectangular plate with large deflections.

Levy's procedure involved the representation of the stress function F

and the lateral deflection function w by double infinite Fourier series.

Such a representation of the solution functions by a complete set of "basic

functions" removes the major limitation of constrained solution functions

present in the earlier solutions. The relationship between the coefficients

of the stress function series and the lateral deflection function series was

determined by direct substitution of the two series into the compatibility

equation and by equating coefficients of like trigonometric terms. The

equilibrium equation was then solved by the same procedure of substitution

7
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of the two series for F and w into the equilibrium equation and equating

coefficients of like trigonometric terms. The result of these operations

was an infinite set of simultaneous algebraic equations which were cubic in

the deflection function coefficients. This set of equations represents a

complete solution of the large deflection plate bending equations for the

simply supported rectangular plate. Levy's solution is referred to as an

"*exact" solution by Timoshenko (Reference 15) and other authors. Of course,

the exact numerical results cannot be obtained (this would require solution

of an infinite number of simultaneous equations), but since the series is

complete and the solution convergent, the degree of accuracy of the results

depends only on the patience and time of the analyst. Levy's solution pro-

cedure has been very useful to the research community as evidenced by the

many investigators which have made use of and extended his solution to study

various phenomena associated with the large deflection of plates. For

example, Paul (Reference 20) extended Levy's procedure to study large de-

flection behavior of clamped plates under thermal loading. The represent-

ation of the stress function and the plate deflection function which is de-

veloped herein will also follow the same procedure as Levy and Paul.

The solution will be written in terms of the stress function F and

the lateral displacement w, with the relationship between these variables

determined by satisfying the compatibility equation, Equation (2). The

lateral deflection w is represented by a complete set of functions in the

form of a "Fourier-type" double series.

w(x,y,t) = h E E W n() fW(x) n(y) m,n = 1,2,3...
m n

8



The functions fm(x) and an (y) are chiosen to be linearly independent of each

ot:her and such that the geometric boundary conditions of zero slope and de-

flection along the edges of the plate are satisfied exactly. The W mn()

are the generalized displacements which are to be determined. The lateral

boundary conditions are

w -w,- a0 on x a 0 and a (9)X

w w= W, M0 on y a 0 and b (10)

The functions f (X) and gn(y) which meet the above requirements are

given by:

*f mW - cos ,(-i.x) - cos (,im+a)•x) ()

and

gn(y) - co (n-)) -o0 (12)

To help perceive the numerical behavior for the component functions f (x)m

and gn(y) which make up the series, the first six terms of the series

U(quation 8) are shown in Figures 2 througha 7. These figures are plotted

with the generalized displacement W held constant.

Upon examination of the above expression of the lateral deflection, it

is found that the compatibility equation (Equation 2) can be identically

satisfied if the stress function F is taken in the following formn:

--A
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4 Eh 2 E E cos ( a) cos (.3Y ) p,q 0,1,2... (13)
P q pq

where the constants P and P contribute to the membrane stress and will
x y

be discussed in more detail later. Also, it should be noted that the above

form of the stress function implies zero shear stress on the plate bound-

aries. Direct substitution of Equations (8, 11, 12 and 13) into the

compatibility equation Equation (2), performing the required differentia-

tions and multiplications, and equating coefficients of like trigonometric

terms yields the following quadratic relationship between F and W
pq mn

= q Z: E E E: B Bpqmnkl W m(14)
Fpq (p 2 /a + q2 a) 2 m n k I Pq 14

where B pqmnkl are integers and a - a/b. Derivation of Bpqmnkl can be

found in detail in Reference 20. The calculation of the integers Bpqmnkl

is accomplished with the aid of a computer program, a listing of which is

presented in Volume II of the report. A tabulation of B pqmnk1 for values

of the subindices p, q, m, n, k and 1 from zero through nine has been

generated, but it is too voluminous to be included in the report. However,

a sample of this tabulation can be found in Reference 20. Substitution of

Equation (14) into Equation (13) yields the following expression for the

stress function in terrms of the unknown parameters Wan,

:=---+•F - - + Eh2 r E

p q

16
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Wp2/a + q 20) 2  a n k 1 pqnnkl -a W a b

p'q Is 0,1,2t...

m,n,k,l - 1,2,3s... (15)

In the above equation, the P and P are determined by applying the in-x y
plane boundary conditions, and the W mnare determined by solving the re-

maining governing differential Equation (1).

As stated *arlieor, the numerical results presented in this study are

based on the case in which the edges are restrained from movement (Equa-

tions 6 and 7). in order to apply these inplane boundary conditions,

expressions for the i'nplane displacement must be developed. Combining the

membrane strain-displacement relations

C us 1 W2 (16)
ox x T *~x

C Vy .1 *wJ (17)

-x 0uy + vx + vx vy 8

and the membrane strain-stress relations

C -(F, -VF, (19)
ox E yy xx

17
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C ((20)
coy (xx " vyy)

and re-arrangement of the resulting expressions yield

a Ou dx a f& 1 r i y -VFx) -- (21)
SX a y XX 2 x

fb g dvy.f (1 2]dy (22)
5 y xx yyy 2 y

where E is the Young's modulus and V is the Poisson's ratio.

Performing the indicated differentiation, integration and applying the

in-plane boundary condition (Equations 6, 7) to each of the above equations

respectively yield:

P a VP a
X x . +I (w n) (23)

E E xa

P b VP b
0----+ -- I (W ) (24)E E y an

The terms Ix (%,) and Iy(Wmn) in the above equations are defined by

m n

I (W )--2 E zw (25)

y an S m Zy an)
m. n



z (W ) a * (.1)2 + (a- 1)2 1- (a+1) 2 W
x man .- +l

-(2-1)
2W *-,- 21((M1)2 +(M-1) 2 JWm

-2(=+1)2W m2n- 2m12 -,

-[(tg+1) 2 +O tu12WMn-2 + (a+ 1) 2 W 2n-

+(m1U)2Wm-2,n2 1 (m+1)2 + (M-1)2 ]%,+

+ (m~i) 2 W.+ + + (m-1) 2 Wa2n (7

z Wm [n12+ (n+12] -n i- (n+12 (27)~n+

-(n-1) 2 W 2mn + 2[(n+1) 2 + (n-1) 2 ]W m

-2(Ii+1) 2 W Mn 2 - 2(n-l)2 W mn 2

-[(no.1) 2 + (n-i) 2 1W + (n+1) 2W
=--2n a-2,n+2

* *(n-1) 2 W - [(no.1)2 + (n-1) 2]W
ui-29n-2 ,u+2,n

+(+)2u+2,n+2 + n-)2W+2,n-2 (28)

19



vhere W 0 for m or n< .mn
Solving Equations (23) and (24) simultaneously yields the following

expressions for the average edge load& Px and Py for the inplane

boundary conditions in which the edges are restrained from Movement

~ V I~~z)(29)

With the lateral deflection given by Equation (8) and the stress

function given by Equation (15)) the equilibrium equation, Equation (1), is

then satisfied by applying the Bubnov-Galerkin method (Reference 21)

jb f. L (vN ) f g dxdy - 0 r,s - 1,2,3... (31)

Upon substitution of L(wF) in Equation (31), the equations are written

as

fb fa (phw, + gwt + D(W,xxxx + 2wxxyy + w'Yyy),

-h(1, w, + F, , - 2F, W, )-Pjf dxdya

yy xx xx yy xy XY r s

where r,s - 1,2,3,... (32)

Utilizing the expressions for w, fr' g5 and F (Equations 8, 11, 12

20
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and 15, respectively) and performing the above integrations yield a set of

second order nonlinear differential equations for the generalised displace-

ments vith time as the independent variable, and it can be written in matrix

notation as

[M] (W}+ (C) (W) + [KIL (WI + 03(w)) - Wp(O) (33)

where [M], [C] and [KIL are the generalized mass, damping and linear

stiffness matrices, respectively$ and (•(W)I is a vector function which is

cubic in the generalized displacements (WI. The integrations of each of

the terms in Squation (32) are given explicitly in Appendix A. The mass and

linear stiffness matrices can be easily generated from equations (Al) to

•i (A4).

If the acoustic pressure loading p(t) is stationary Gaussian, is

ergodic and has a zero mean. Application of the Krylov-Bogoliubov-Caughey

equivalent linearization method (References 22-28) yields an equivalent set

of liaearized equations to Equition (33) as

S[M] (WI + [C) (4W + ([KIL + [K] 9L (W) (p(t)} (34)

or

i* [M] +{[c (C) + [K] (WM -(p(t)I (35)

whore [K] EL is the generalized equivalent linear stiffness matrix and

[K] - [K]L + [K]EL. The elements of [KJEL are evaluated from the equation

(Reference 23)
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( (ivi j (36)

and they are derived and siVen explicitly in Appendix S, and C[1] stands

for the operator of mathematical expectation. The approximate generalized

displacements (W), computed from the linearized equation, Equation (35),

are also Gaussian and approach stationary because the panel motion is

stable,

To determine the mean-square generalized displacements 12mn in Equa-

tion (34), an iterative process is introduced. The undamped linear equation

of Equation (34) is solved first, which requires the determination of the

eigenvalues and eiSenvectors of the undamped linear equation

OA [M] (.1. = [K] (0) (37)

where w j is the linear frequency of vibration, and {*} is the normal

mode shape.

Apply a coordinate transformation, from the generalized displacements

to the normal coordinates (4 modes will be used in the analysis, n a 4), by

(W) - [ () (qm

mxl mxn nxl (38)

where each column of (0] is a normal mode {*j.* The damped linear

equation of Equation (34) becomes
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K4 ( ' ) , tCJ +q) ÷ t j (q) a (P(t)) (39)

where t% ,j #I [ IMI T # (40)

t-c4 (- ]T (C] [141 -2 'kwJ t%14 (41)

*t K-4• . [T (KIL (#I a t-*w2 ._j t.1.j (42)

(P) - [- T (p) (43)

Equation (39) is uncoupled in the normal coordinates, the jth row of Equa-

tion (39) is

P. (44)
qj + 2 ij Wjqj + i jq " M (

The mean-square response of modal amplitude is

q; f aS(W)IU (W)12 dw (45)

PP
where S.(w) is the spectral density function of the excitation Pj(t), and

the frequency response function is given by

1

H.(w) = M'(W -w2 + 2igjwjw) (4b)
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For lightly demped (Q c/c 0 ( 0.05) structures, the response curves will

be highly peaked at wJ, The integration of Equation (45) can be greatly

simplified if the forcing spectral density function S (p) can be consid-

ered to be constant in the frequency band surrounding the linear resonance

peak Mi, so that

V• •jqjWo) (47)q~ 4H2Cw

The covariance matrix of the linear generalized displacements is

7(. T (48)Timnkl L 4

The diagonal terms of [WmAnkl]L are the mean-square linear generalized

displacements W2 . This initial estimate of expected value on generalized

displacements nov can be used to compute the generalized equivalent linear

stiffness matrix [KIEL through Equation (36) or Equations (34 to B7). The

undamped linearized equation of Equation (34) is solved again

A2' [MJ(,} ([K] [K]1.I) +,}K (49)

where At. is the equivalent linear or nonlinear frequency of vibration, and
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is the associated equivalent linear nortoal mode. Then Equation (35)

is transformed again to the normal coordinates and it has the form as

!M.j (q) * 1'•0C, (q) + t--l1 (q) I (P(t)) (50)

in which

t- Kj - #I T ([KjL + (KJEL)[I - [ELl2 ..J r-M4 (51)

The jth roy of Equation (50) is

qj + 2C W;jqj + qj (52)
SM

and the displacement covariance matrix is

Z -3 1 (53)

The diagonal terms of [WkW]Iare the mean-square generalized displace-

ments W2 As the iterative process converges on the iter-th cycle, the
mn

relations

(q2 0) (q2 )e (54)
j iter j ter-l
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(j iter j nJiter-t 5i

i- (we) 1( 2  (56)
onA i t r mn iter-I

become satisfied. In the numerical results presented in the following

section, convergence is considered achieved when the difference of the RMS

displacements satisfies the relation

(rS ( mnw )iter- (wSw 'm)iterf a( OF -l C 10' for all 4Cn (57)
an iter

Once the PJS generalized displacements are determined, the PMS deflec-

tion of the panel and the RMS maximum strain can be determined from Equa-

tions (8, 19, 20) and the bending strain-displacement relations as presented

in the next section.

In practice, the spectral density is usually given or measured in terms

of the frequency f in H4ertz. To convert the spectral density from the

analytical S( W) to practical Sr(f). the following relations are used

(Reference 29)

wn - 27wf (58)

8p( ) - Sp(f)/2ir (59)

The pressure spectral density function Sp(f)/2w then has the units
P
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(Pa) 2•/l or (psi)I/Ho and the displacement covariance matrix, Equation

(53), becomes

IV Wf T(60)

where Sf is a nondinensional forcing spectral density parameter defined as

8 (f)Sf *2• (X/b'$2(61,)
f P 2 h4(D)/pb4) 3

/ 2

and

W2 X2 (2 D (62)

A A o2 ( D(6)

vA WOO/Q (64)

The frequency parameters )Ao and A, and the mass parameter P are all

dimensionless quantities. This nondimensional spectral density parameter of

acoustic pressure excitation S vfil lbe used for the numerical results

presented in the next section.

3. DEFLE• ONTO AND STRAINS

From Equation (8), the mean-square deflection of the plate is given by
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h n - k I iMnnWki f(x)fk(x)l"n(y)gl() (65)

where the average# m--kl * U•W[n-kI- have beon determined in Equation

(53). The mean-square center deflection can be obtained from Equation (65).

For a clamped rectangular plate (a ) b), the maximum bending strain

occurs at the extreme-fiber (z ± h/2) at the midpoint (x - a/2) of the

long edge and perpendicular (c ) to the long edge. The bending strain aty

the extreme-fiber and in the y-direction is

b t h 92w (66)by 2 ay2

or (-1w
- ~ E f (x)[ (n-1)2 co_

h2 2 m nIm b

b nn

The membrane strain in the y-direction, Equations (15, 20, 29 and 30),

in terms of generatlied displacements Win is

eh~2 ". 12 rn yWn

r mn (Wa

+ C B W WB (68)
m anklpq pq pqmnkl Ma k(
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where

C C P 2 2. Cos Cos (69)
pq (9/G +q 2 Q)2  a b

The total strain is then given by

y oy +by (70)

and the mean-square strain becomes

€2 a C2 + 2C•I[t c] + 62 (71)

y oy oy y

For Gaussian random processes with zero-mean, the generalized displacements

follow the relations

C(W ij WklWMn] 0 (72)

C(W ijWkIWmRWrs] - ClwijWkl] C [WmW]@

+ C(W ijWmn] 4 (W~klWrsI + C(WijWrs] C[(WklWmnI (73)

and the EMS maximum strain can be determined from Equation (71).
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SECTION III

RESULTS AND DISCUSSION

1. GENERAL COKHENTS

Since the solution developed in Section II is of the infinite series

type, it is important to understand its convergence behavior. The experi-

ence gained Ln Reference 20 on convergence of the solution for the large

deflection under thermal loading aids in truncation of the series in a

rational manner.

The convergence of the solution is examined through a study of square

and rectangular panels subjected to a normal incidence acoustic impingement.

Since the loading is symmetric, therefore, only symmetric generalized dis-

placements are retained in the transverse deflection function. The partic-

ular generalized displacements that were chosen to be nonzero in the con-

vergence study are shown in Table 1. Numerical results are provided for the

mean-square plate center deflection and the mean-square maximum strain for a

lateral deflection series that varies in size from four, six, ten and to

fifteen terms. The maximum strain occurs at the extreme-fiber (z - ± h/2)

perpendicular to the long edge (c y) and at the midpoint (x - a/2). In

the results presented, the white noise excitation is band-limited with a

frequency bandwidth of 25 Ht to 6,000 Hz as shown in Figure 8, the damping

ratio to assumed to be constant for all four normal modes and Poisson's

ratio is equal to 0.33. The computer program is, however, much more flex-

ible that the spectral density of pressure excitation could be varying sLow-

ly in the neighborhood of equivalent linear frequency nj and also the

damping ratios could be different for different normal coordinates.

30
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TABLE 1. GENERALIZED DLSPLACANSNTS F0& CONVERGENCE 8TUDIES.

Number of terms

Generalized

Diseaceents 4 6 10 15

W i x x x x

*Wi 3a X X X X

Wa1 I X X X

Wi5  x x x

W43 S X X
w35  x x

Wl 7  X X

W?1• x x

Wss X

W 137 x

W73  X

Wig X

2. CONVERGENCE Of THE NONLInEAR RANDOM RESPONSS

The convergence of the solution technique was examined to determine the

degree of accuracy possible vith a highly trancated transverse deflection

function series. The mean-square nondimensional center deflection versus

the nondimensional spectral density paramneter Sf using 4, 6, 10 and 15

31
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terms in the deflection function for a square and a rectangular (a - 2)

plate are shown in Figures 9 and 10, respectively. It clearly indicates

that a 6-term solution gives accurate results for the nonlinear maximum de-

flection while a 4-term solution will provide very accurate linear results.

Figures 11 and 12 show the maximum mean-square strain versus the nonditmen-

sional pressure spectral density for the square and rectangular (a a 2)

plates, respectively, using 4, 6, 10 and 15 terms in the deflection

function. It can be seen that the convergence of the mean-square strain in

much slower as compared with that of the mean-square deflection. More

nuber of terms, therefore, are needed in the deflection function for accur-

ate determination of strains. Results of maximum mean-square strain based

on small deflection linear theory are also given in the figures. The use of

linear theory would lead to poor estimation of panel fatigue life.

3. EFFECTS OF PAdEL DAMPING

Figures 13 and 14 show the mean-square nondimensional center deflection

versus the nondimensional spectral density of acoustic pressure excitation

for rectangular panels of length-to-width ratio a - 1 and 2 with the damp-

ing ratio equal to 0.009, 0.018 and 0.027. Figures 15 and 16 show the

maximum mean-square nondimensional strain versus the nondimensional pressure

spectral density for rectangular plates of aspect ratios of 1 and 2 with

different panel damping ratios. Ten terms were included in the deflection

function to generate those results shown in Figures 13 through 16. It is

clear from the figures that the precise determination of panel damping is

very important.
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SECTION IV

CONCLUDING REMARKS

A "quasi-exact" analytical procedure was developed for the prediction

of the nonlinear random response of rigidly clamped rectangular panels sub-

jected to broadband noise excitation. Multiple (4) modes were employed in

the formulation. A computer program has been developed to aid in the

determination of RHS center deflection, RMS maximum strain and equivalent

linear frequency at given pressure spectral density of excitation.

The convergence of the present analytical method was demonstrated

through a detailed study of a square and a rectangular (a a 2) plate under

normal incidence acoustic impingements. Results were presented for both

panels with the truncated lateral deflection function series of 4, 6, 10 and

15 terms. This study revealed that convergence is very rapid for the deter-

mination of central deflection, but much slower in the prediction of

strains. Accurate mean-square deflections can be obtained with the use of

six terms in the deflection function, while it is necessary to consider as

many as 10 or more terms for the accurate determination of the strains.

This computed RNS strain and equivalent linear frequency, in conjunction

with strain versus cycles to failure (S-N) data, should be used for the

etimation of service life.

In the numerical examples presented, a constant damping ratio was used

for all excitation levels. The total damping includes the acoustic radi-

ation damping, panel edge damping and the material damping in the panel

itself. Nonlinear damping phenomena, however, have been observed in experi-

ments. Strain response data for an aluminum panel of 3.94 cm x 3.94 cm x

0.25 mm at three different overall sound pressure levels (130, 142 and 160

42
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dB) obtained in Reference 12 are shown in Figure 17. At the low-excitation

levels, the modal responses of the panel can be clearly seen. At the high-

est level, broadening of the response peak due to nonlinear damping is

observed. Therefore, more effort is needed to better understand the effects

of nonlinear damping on panel response.
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APPENDIX A

INTRG8tALS OF f b fja Lv, F?) f A dxdy

ab 94!! Dhw4 ab

fb D - g dxdyu

( {r - 1)4 + (r + 1)41 [(C1 + 1)Wrgs Ws- Ue.. 2 -re2

+,(r -1) 4 [W r 2 *o2 + w r 2 ,4+2 - (C1 + 1)w ]-,s

+(+14 Wr+2,*+2 + r+2us-2 - (C1 + 1) Wr II1 (Al)

ýba D!4-w f so dxdy -Dhw4 sb

* [. )4 + (# + 1)4] [(C2 + l)W r' - w U 2 , - w r 2 Ja

+ (s 1)4 [Vý2,2+ rs2  - (C2 + l)Wr3s 2]

+ (4 + i)4 [Wr+,25 2 + Wr-2,9+2 - (C2 + 1) Ilru.+2]l (A2)

fb~a 94Dhw 4ab

f 2D -w fZ dxdyin
2 x2 Dy2  r 3262

* (r- 1)2 (g ,'I)2 [w -~wr 2 W* .w 2

+ (r-1l2 (s +1)2 [Ii - w + w]wrus wr,+2 r-2,e r-2,s+2

45



+,(r -1)2 (a -1)2 [W rs W r,s2 - W r 2 ,s + I. ,s- A3

tbf a a2W ph2 ab
j Ph - f a1 dxdy* -

* (C3 + 2)(C4 + 2)W r a-(C3 + 2)Wr+2,s-(C3 + 2)(C4 + 1)Wý-0

(4+2Wr,s+2-C+ 4+2) r,s-2 +Wr+2,s+2

+ (CS + 1)Wr+26s-2 + (c C4+* W _,+ + (C3 + 1)(C4 + 1)Wr.. 2 9s 2] (A4)

ffp(t) frg5 dxcdy - ab p(t) when r - s

m0 otherwise (A5)

-h fb faF, W, f 9 dxdy ab[(O )l + (0~~~
y'y xx r ar s2

r2(n+s)2 A1(n+s) - (n+s-2)2 Al(n+9-2)-1

(m+1)2 j(n+9+2)2 A1(n+s+2) - 2(n-8)2 A1(n-s) +

(n-sg)2A 1 (n-s+2) + (n-a-2)2 A1 (n-s-2) j
Eh4W4

- I- 1
16 bvi m 2 (ne~+#) 2 A2 (n+s+) - 2(ns-2) 2 A2 (ns-2)+

*(m-1 [2 (n~s2)2 A2 (n+su) - (n-s-) 2 k2(n-s-)+

L L ~(n-s+2) 2 A2 (n-s+2) + (n-s-2) 2 A2 (n-s-2) i

Phwh((r+1) 2 + (r-1) 2 j . [W s2 + W rgm2  (+O r,s j+

+ x4a (r+,')2 [C,+,) Wr+296  Wr+2,,u+ 2 -Wr+ 2,a- 2 ] r~+ c+1

L(r-1) 2 ((Cl+1)Wr-. 2 ,s Wr-.2,s..2 W-2s] IJ (A6)
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-h lb fja Fs v f j dxdy aab[i(01 )3 + (o )4 1xx yytrarer

2(3+1)2 A3(u+r) - (m.4r..2)2 Aa(u.4r-2) -
(ni.1) 2 (a..r+2) 2 A3 (asr+2) - 2(m..r)2 A3 (uv-r) +

(m-r2)2 3(m-+2) (u-r..2)2 A3 (.-r.-2)J

16 a1
(n)2 (3,1,)2 A.4 (m+r+) - 2(,~r-)2 A 1(mrn-r)+

4.(-12 (tA+r)2 A4(m+r2) - 2(m-r.)2 A1 4 (m-r-)+

(ui-r+2)2 A4(u-r+2) + (m..w-2)2 A4(m-r-2)

P h~w2&[(S+i) 2 + (l...j)2 ] [W ( 2,s + 'ý2s- (C2.1)Wr,s

+ +(g+)2 (C2,) r,*+2 -wr-2,es- r+2us+2I+

ULg-1) 2 [C(2 +1)W r.82 - W r. 2 *..2 -W r+2 *s2J (7

2h fb fa F,xyv f g dxdy - ab( O) 5  -

(m-I)n-i)[mo~r) A5(m~r) - Ins-rl A5(m-r)
(me'r-2) AS(m~r-2) + Im-r-2I AS(us-r-2)J +

(m-1)(ne1)((m~r) A6(m+r) - Ins-ri A6(m-r)-

(um4r-2) A6(m+r-2) + lu-r-21 A6(in-r-2)J +

Eh4,g 4  (m1l)(n-1)[(m~r) AS(m~ir) - Ins-ri AS(m-r)-

-I (m+r+2) ASGn~r.2) + jm-r+21 AS(m-r+2)j +
* ~(in+i)(n+i)[(m+r) A6 (sa+r) - jm-rl A6(m-r)-

(msr+2) A6(n+r+2) + lm-r+21 A6(m-r+2)] (AS)
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wh~ere; W.. m 0 for jor 1< 1; *tp 7q jq

A1(k) a C(.I~r*2)1ur+$ + C(ua-r)yFr~ - C(m~er)Fu ~~ - C(m-r+2)F '-+p
Agk 34r2yar-2,k + uar)F-r~k - uIrF+rsk - u--) -r+-2,k

AS~) uC(ner-2)Vk sns+ C(u'-$)Fkn - C(n+s)Fko~ - C(ua-#-2) r1 -+

A4(k) m C(u...2)Yknv - + C(n-*)Fkt- - C(n~s)Fkn~ - C(n-s-2) Fk~-

4(k) - (n*')'k~n+s + In-s-2IrFk~n-s-2 - (n+s-2) Fk~n+s-2 - n'kn-

AG(k) - (n+s)F k,n~ + Inas+21F ko s+2 - (n's+2) F~++ nsF ku511

and;

C(k)m 12for k =0COm[ for aI c2.12 for r I1 for k 0 0 C1  li for a 1 1 L for r I

C {1 i for a I c4 . i1for riI (AIU)0for a 1 0Ofor r 01
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APPENDIX B

GENERALIZED EQUIVALENT LINEAR STIFFNESS NATRIX [K]EL

The elements of the equivalent linear stiffness matrix are derived from

the expression

1rsij [W (B)

The function 0re is associated with the integrals after applying the

Bubnov-aGlerkin approach to the equation of motion in deflection, and it can

be expressed as the sun of five subfunctions as

0 h fb fa(F ,+ ,W - 2F.W f9dd
0 rs b- f .f(F'yy xx + Fxxwyy ,xy )frgdxdy

S(B) rs + (0 rs)2 + (Ors3 + (0Brs)5 (B2)

The equivalent linear stiffness matrix will consist of five submatrices

as

[K]lZL [ I + 1K]2 + [K) 3 + [K] 4 + [K] 5  (B3)
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The elements of the submatricee are liven as the folloving

(Kra.ij) -

Zh4W4 {(i + 1)2 [2(j + 8) 2 A1(j + a) - (j + a - 2) 2 A1 (j + a - 2)
16&2b

2

-(j + s + 2) 2 A1 (j + a + 2) - 2(j - a)2A1 (j - 0)

+ (j - a + 2) 2 A1 (j - a + 2) + (j - - 2) 2 Ai(j - a - 2)1

+ (i - 1)2 [2(j + g)2 A2(j + g) - (j + s - 2)2A2(j + a - 2)

- (j + a + 2) 2 A2 (j + s + 2) - 2(j - )2A2 (j - a)

+(j -a+ 2) 2A2 (j + 2) + (- -2)2A2 (j - - 2)]

"+ E E ((mn + 1)2 [2(n + 8) 2 A(n + a) - (n + a - 2) 2 A'(n + a - 2)
mn 1 1

-(n + a + 2) 2 A'(n + a + 2) - 2(n-s) 2 A'(n-s)
I I

+ (n - a + 2) 2 A'(n - a + 2) + (n - a - 2) 2 A'(n - a - 2)]
1 1

" (m-1)2 12(n + g) 2 A'(n + a) - (n + s - 2) 2A'(n + a - 2)
2 2

- (n + a + 2) 2 A'(n + s + 2) - 2(n - 8) 2 A'(n - a)
2 2

+ (n - s + 2)2A'(n - a + 2) + (n - a - 2)A( - s - 2)1)1
2 2

( ]h 2 w2  C 1 8u(Wrs)

rsij Va(-2  y Mu a x mu -

+ •h2,x2 ( ,__.b ([Zy i) U(Wrs)

4 b2  y' '

1a clWj U(WYYJ~jJ (B5)
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W ~ '~' .V-Wt,.l. .4,t~. W4V" ~ R"..* - *' * S. - --o' v l ~ 'd* jr ew 4 r . r. V *. :_b'* *

+ .12w
2

4-~ v 'c[Z (w )j V(W I~
a2  x

+ [zy(wij) V(Ws)J)j (B6)

b2  t

raij 8a2b2

-(i+r-2)AS(i+r-2)4Ii-r-21A6 (i-r-2)I

+(i-1)(j*1)[ (i~r)A6(i+r)-Ii-rIA6(i-r)

-(i4.r-2)A 6(i+r-2)+I i-r-2j A6 (i-r-2)I

-(iers2)A ( i+r+2)+ Ii-r4-2lA 5 (i-r+2)]

+(i+1)(J+1) ((i+r)A6(i+r)-Ii-rIA6(i-r)

-(i+r+2)A6(i+r+2)+I i-r+2lA6(i-r+2)]

+ E E ((mt-l)(n-l)[(.+r)AI(m+r)-Iui-rlA'(ua-r)
m n S S

-(m+r-2)A' (m+r-2)+ Im-r-2 IA' (i-r-2)]
5 5

+(m-1) (n"1)[C(m+r)A' (u+r)- It-rIA' (m-r)
6 6

-(ui+r-2)A' (u+r-2)+lIm-r-21A' (z-r-2)]
6 6

+(ua+1)(n-1) [Ga+r)A (m+r)-Im-rlA' (m-r)
5 5

-(u+r+2)A' (m~r+2)+ j.-r+2jA' (m-r+2) I
5 5

+(m+l) (n+1) [(m+r)A' (t+r)- jm-r IA' (m-r)
6 6

-(u+r+2)A'(m+r+2)+Itn-r+21A'(m-r+2)] )}
6 6
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where

u(Wre) * (r+i1) 2 + Ur-01)2JWr+ + Wr -2 (C1.i) W Ij

+ (r+i)2 [Clc~l) Wý+1 - wr+,+ - Wt2s1

+ (r-1)2 1(C1+1)'W r.2s- W r2. - - W r I*+1(B

V(W r. 1 (0+1)2 + (@-1)2 1J[Wr+2, + Wr-2,s - (C2+1) Wrol

+ (g+1)2 ((C24i) W W W Ire*+2 r-2,s+2 r+2,9+2
+ (8-1)2 1(C2 +1) W, ,*..2  -2 -2 W r+2,..2] (B9)

AINd) *CUi + r o+ 2)(F ) i+r+2,d + Cir(Y -~

-C (i + r) ( FC)ir,td - C(i - r + 2)( FC)i-+2 d (B10)

A2 (d) -C(i + r - 2) (FC)i -2, C(i r)-i-~

-C Ui+ 0(F,)i ~~ - C(i ) i-r-2)(F)il

As(d) -(j+$)(i't dsj+s +. Ii-s-2I(F4)d jso2

-(j+s-2)(F rgd~j+s-2 J-s1("'9'djj-s (B12)

A6 (d) * (j+*)(FC~~~ +)js2 F~~-+

-(j...2)( Ft d,j+s+2 - lIidI(FC~d~j...B13

(P) pq E E E E pqnkC Wmkl 0 (14)
pq (pA /t+q 2a)2  m n k 1.pnnl ink
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A'(N) SAIr *C( + r +2)FV + C(M-r) Fe
I aWijj .+r+2,d m-r'd

-CCm +r) 1uat - CC. - r+ 2) F'(1)
a~rsdM-r*2,d

A'(d) *W ~ u+ r - 2) Fl + On - r) F'
2 .* ur-2,d

~C~u m)1,,,d - CCr-r2)F

A'(d) OA - (n+$)F' + Id-n-s-2
s W dwi ,n+a jn-a-21F

-(n~dsn2s-2 - nslushna(B7
-(n~-2)' dn-s 317

SA6
6'()-aw (+)~ ~ +a In-s+21 Fdon-s+2

dn(n42 ln-Fl
-(ns+2F' +2- (318)

F' f (B +3 B ) [w w] 39pq (p2 /0+qpa) 2  k 1 Pqijlcl pqklij mu ki(B9

a*a/b (B20)

53



C for a 1
1 for a 0 1

C2 12 for r a 1
for r 0 1

C(k) . {2for k aO
1 for kc 00

W• - 0 for m or n < 1 (B21)inn

and (W n Wkll is the covariance matrix of the generalized displacements.

The diagonal ters of [w W kl are the mean-square displacements W2

Expression for (Krsij)3 which is similar to (K rij) has aloo been

derived.
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